1.Relation and Function
normal

If $A = \left\{ {1,2,3,......m} \right\},$ then total number of reflexive relations that can be defined from $A \to A$ is 

A

${2^{{m^2} - m}}$

B

${2^{{m^2}}}$

C

${2^{{m^2} - m+1}}$

D

${2^{{m^2} + m}}$

Solution

$\because n(A \times A)=m^{2}$

$\therefore$ Any reflexive relation must have $(1,1)$

$(2,2) \dots(m, m)$ i.e. $m$ elements and may contain any mumber of elements out of rest $\left(m^{2}-m\right)$

$\Rightarrow \mathrm{m}^{2}-\mathrm{m} \mathrm{C}_{0}+^{\mathrm{m}^{2}-\mathrm{m}} \mathrm{C}_{1}+\ldots+\mathrm{t}^{\mathrm{m}^{2}-\mathrm{m}} \mathrm{C}_{\mathrm{m}^{2}-\mathrm{m}}=2^{\mathrm{m}^{2}-\mathrm{m}}$

are total number of reflexive rela tion

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.